PEER-REVIEWED PUBLICATIONS (1788 citations per Google Scholar, h-index = 15)

(Undergraduate and masters students underlined)

  1. Bauman, B. M., Jeong, C., Savage, M., Briker, A. L.,Janigian, N. G., Nguyen, L. L., Kemmerer, Z. A., and Eggler, A. L. (2018) Dr. Jekyll and Mr. Hyde: Oxidizable phenol-generated reactive oxygen species enhance sulforaphane’s antioxidant response element activation, even as they suppress Nrf2 protein accumulation. Free Radical Biology and Medicine. 124, 532–540. DOI:10.1016/2Fj.freeradbiomed.2018.06.039
  2. Kemmerer, Z. A., Ader, N. R., Mulroy, S. S., and Eggler, A. L. (2015) Comparison of human Nrf2 antibodies: A tale of two proteins. Toxicol. Lett. 238, 83–89. DOI: 10.1016/2Fj.toxlet.2015.07.004
  3. Turlington, M., Chun, A., Tomar, S., Eggler, A., Grum-Tokars, V., Jacobs, J., Daniels, J. S., Dawson, E., Saldanha, A., Chase, P., Baez-Santos, Y. M., Lindsley, C. W., Hodder, P., Mesecar, A. D., and Stauffer, S. R. (2013) Discovery of N-(benzo[1,2,3]triazol-1-yl)-N-(benzyl)acetamido)phenyl) carboxamides as severe acute respiratory syndrome coronavirus (SARS-CoV) 3CLpro inhibitors: identification of ML300 and noncovalent nanomolar inhibitors with an induced-fit binding. Bioorg. Med. Chem. Lett. 23, 6172–6177. DOI: 10.1016/2Fj.bmcl.2013.08.112
  4. Jacobs, J., Grum-Tokars, V., Zhou, Y., Turlington, M., Saldanha, S. A., Chase, P., Eggler, A., Dawson, E. S., Baez-Santos, Y. M., Tomar, S., Mielech, A. M., Baker, S. C., Lindsley, C. W., Hodder, P., Mesecar, A., and Stauffer, S. R. (2013) Discovery, synthesis, and structure-based optimization of a series of N-(tert-butyl)-2-(N-arylamido)-2-(pyridin-3-yl) acetamides (ML188) as potent noncovalent small molecule inhibitors of the severe acute respiratory syndrome coronavirus (SARS-CoV) 3CL protease. J. Med. Chem. 56, 534–546. DOI: 10.1021/2Fjm301580n
  5. Eggler, A. L., and Savinov, S. N. (2013) Chemical and biological mechanisms of phytochemical activation of Nrf2 and importance in disease prevention. in 50 Years of Phytochemistry Research, pp. 121–155, Recent Advances in Phytochemistry, Springer International Publishing, 43, 121–155. DOI: 10.1007/978-3-319-00581-2_7
  6. Hu, C., Eggler, A. L., Mesecar, A. D., and van Breemen, R. B. (2011) Modification of Keap1 cysteine residues by sulforaphane. Chem Res Toxicol. 24, 515–521. DOI: 10.1021/2Ftx100389r
  7. Turlington, M., Chun, A., Jacobs, J., Dawson, E., Daniels, J. S., Saldanha, A., Chase, P., Hodder, P., Eggler, A., Tokars, V., Mesecar, A., Lindsley, C. W., and Stauffer, S. R. (2010) Non-covalent triazole-based inhibitors of the SARS main proteinase 3CLpro. in Probe Reports from the NIH Molecular Libraries Program, National Center for Biotechnology Information (US), Bethesda (MD), [online]
  8. Small, E., Eggler, A., and Mesecar, A. D. (2010) Development of an efficient E. coli expression and purification system for a catalytically active, human Cullin3-RINGBox1 protein complex and elucidation of its quaternary structure with Keap1. Biochem. Biophys. Res. Commun. 400, 471–475. DOI: 10.1016/2Fj.bbrc.2010.08.062
  9. Eggler, A. L., Small, E., Hannink, M., and Mesecar, A. D. (2009) Cul3-mediated Nrf2 ubiquitination and ARE activation are dependent on the partial molar volume at position 151 of Keap1. Biochem J. DOI: 10.1042/BJ20090471
  10. McAdams, K., Casper, E. S., Matthew, H., Santarsiero, B. D., Eggler, A. L., Mesecar, A., and Halkides, C. J. (2008) The structures of T87I phosphono-CheY and T87I/Y106W phosphono-CheY help to explain their binding affinities to the FliM and CheZ peptides. Archives of Biochemistry and Biophysics. 479, 105–113. DOI: 10.1016/
  11. Holland, R., Hawkins, A. E., Eggler, A. L., Mesecar, A. D., Fabris, D., and Fishbein, J. C. (2008) Prospective type 1 and type 2 disulfides of Keap1 protein. Chemical Research in Toxicology. 21, 2051–2060. DOI: 10.1021/2Ftx800226m
  12. Eggler, A. L., Gay, K. A., and Mesecar, A. D. (2008) Molecular mechanisms of natural products in chemoprevention: induction of cytoprotective enzymes by Nrf2. Molecular nutrition & food research. 52 Suppl 1, S84-94. DOI: 10.1002/2Fmnfr.200700249
  13. Luo, Y., Eggler, A. L., Liu, D., Liu, G., Mesecar, A. D., and Breemen, R. B. van (2007) Sites of alkylation of human Keap1 by natural chemoprevention agents. J. Am. Soc. Spectrom. 18, 2226–2232. DOI: 10.1016/2Fj.jasms.2007.09.015
  14. Eggler, A. L., Luo, Y., van Breemen, R. B., and Mesecar, A. D. (2007) Identification of the Highly Reactive Cysteine 151 in the Chemopreventive Agent-Sensor Keap1 Protein is Method-Dependent. Chem. Res. Toxicol. 20, 1878–1884. DOI: 10.1021/2Ftx700217c
  15. Liu, G., Eggler, A. L., Dietz, B. M., Mesecar, A. D., Bolton, J. L., Pezzuto, J. M., and Van, B. (2005) Screening method for the discovery of potential cancer chemoprevention agents based on mass spectrometric detection of alkylated Keap1. Analytical Chemistry. 77, 6407–6414. DOI: 10.1021/2Fac050892r
  16. Eggler, A. L., Liu, G., Pezzuto, J. M., Van Breemen, R. B., and Mesecar, A. D. (2005) Modifying specific cysteines of the electrophile-sensing human Keap1 protein is insufficient to disrupt binding to the Nrf2 domain Neh2. Proceedings of the National Academy of Sciences of the United States of America. 102, 10070–10075. DOI: 10.1073/pnas.0502402102
  17. Eggler, A. L., Lusetti, S. L., and Cox, M. M. (2003) The C Terminus of the Escherichia coli RecA Protein Modulates the DNA Binding Competition with Single-stranded DNA-binding Protein. J. Biol. Chem. 278, 16389–16396. DOI: 10.1074/2Fjbc.M212920200
  18. Eggler, A. L., Inman, R. B., and Cox, M. M. (2002) The Rad51-dependent Pairing of Long DNA Substrates Is Stabilized by Replication Protein A. J. Biol. Chem. 277, 39280–39288. DOI: 10.1074/2Fjbc.M204328200
  19. Rice, K. P., Eggler, A. L., Sung, P., and Cox, M. M. (2001) DNA pairing and strand exchange by the Escherichia coli RecA and yeast Rad51 proteins without ATP hydrolysis. On the importance of not getting stuck. Journal of Biological Chemistry. 276, 38570–38581. DOI: 10.1074/2Fjbc.M105678200
  20. Peterson, C. J., Tsao, R., Eggler, A. L., and Coats, J. R. (2000) Insecticidal activity of cyanohydrin and monoterpenoid compounds. Molecules. 5, 648–654. DOI: 10.3390/50400648