From Villanova University (Undergraduate authors underlined, Masters authors in italics) 

Pensabene, K. M., LaMorte J., Allender,A.E., Wehr, J.,Kaur P., Savage, M., Eggler, A.L., (2023). Acute oxidative stress suppresses Nrf2 protein synthesis by inhibiting global protein translation. Antioxidants 12, 1735. DOI: 10.3390/antiox12091735

Grady, R. S., Traustadottir, T., Lagalante, A.F., Eggler, A.L., (2023). Bioavailable sulforaphane quantitation in plasma by LC-MS/MS is enhanced by blocking thiols. Journal of Agricultural and Food Chemistry, 71, 12875–12882. DOI: 10.1021/acs.jafc.3c01367

Sauerland, M., Mertes, R., Morozzi, C., Eggler, A.L., Gamon, L. F., Davies, M. J. (2021). Kinetic assessment of Michael addition reactions of alpha, beta-unsaturated carbonyl compounds to amino acid and protein thiols. Free Radical Biology and Medicine, 169, 1-11. DOI: 10.1016/j.freeradbiomed.2021.03.040

Repash, E. M., Pensabene, K. M., Palenchar, P., Eggler, A.L. (2021). Solving the Problem of Assessing Synergy and Antagonism for Non-Traditional Dosing Curve Compounds Using the DE/ZI Method: Application to Nrf2 Activators. Frontiers in Pharmacology, 12, 686201. DOI: 10.3389/fphar.2021.686201

Bauman, B. M., Jeong, C., Savage, M., Briker, A. L., Janigian, N. G., Nguyen, L. L., Kemmerer, Z. A., and Eggler, A. L. (2018) Dr. Jekyll and Mr. Hyde: Oxidizable phenol-generated reactive oxygen species enhance sulforaphane’s antioxidant response element activation, even as they suppress Nrf2 protein accumulation. Free Radical Biology and Medicine. 124, 532–540. DOI: 10.1016/j.freeradbiomed.2018.06.039

Kemmerer, Z. A., Ader, N. R., Mulroy, S. S., and Eggler, A. L. (2015) Comparison of human Nrf2 antibodies: A tale of two proteins. Toxicol. Lett. 238, 83–89. DOI: 10.1016/j.toxlet.2015.07.004

Eggler, A. L., and Savinov, S. N. (2013) Chemical and biological mechanisms of phytochemical activation of Nrf2 and importance in disease prevention. in 50 Years of Phytochemistry Research, pp. 121–155, Recent Advances in Phytochemistry, Springer International Publishing, 43, 121–155. DOI: 10.1007/978-3-319-00581-2_7

From Purdue University and University of Illinois at Chicago (Post-doctoral and Research Professor Work)

Jacobs, J., Grum-Tokars, V., Zhou, Y., Turlington, M., Saldanha, S.A., Chase, P., Eggler, A.L., Dawson, E.S., Baez-Santos, Y.M., Tomar, S., Mielech, A.M., Baker, S.C., Lindsley, C.W., Hodder, P., Mesecar, A., Stauffer, S.R. (2013) Discovery, synthesis, and structure-based optimization of a series of N-(tert-butyl)-2-(N-arylamido)-2-(pyridin-3-yl) acetamides (ML188) as potent noncovalent small molecule inhibitors of the severe acute respiratory syndrome coronavirus (SARS-CoV) 3CL protease. J. Med. Chem. 56, 534–546.

Turlington, M., Chun, A., Tomar, S., Eggler, A.L., Grum-Tokars, V., Jacobs, J., Daniels, J.S., Dawson, E., Saldanha, A., Chase, P., Baez-Santos, Y.M., Lindsley, C.W., Hodder, P., Mesecar, A.D., Stauffer, S.R. (2013) Discovery of N-(benzo[1,2,3]triazol-1-yl)-N-(benzyl)acetamido)phenyl) carboxamides as severe acute respiratory syndrome coronavirus (SARS-CoV) 3CLpro inhibitors: identification of ML300 and noncovalent nanomolar inhibitors with an induced-fit binding. Bioorg. Med. Chem. Lett. 23, 6172–6177.

Hu, C., Nikolic, D., Eggler, A.L., Mesecar, A.D., van Breemen, R.B. (2012) Screening for natural chemoprevention agents that modify human Keap1. Analytical Biochemistry 421, 108–114.

Hu, C., Eggler, A. L., Mesecar, A. D., and van Breemen, R. B. (2011) Modification of Keap1 cysteine residues by sulforaphane. Chem Res Toxicol. 24, 515–521. DOI: 10.1021/2Ftx100389r

Turlington, M., Chun, A., Jacobs, J., Dawson, E., Daniels, J.S., Saldanha, A., Chase, P., Hodder, P., Eggler, A.L., Tokars, V., Mesecar, A., Lindsley, C.W., Stauffer, S.R. (2010) Non-covalent triazole-based inhibitors of the SARS main proteinase 3CLpro, in: Probe Reports from the NIH Molecular Libraries Program. National Center for Biotechnology Information (US), Bethesda (MD).

Small, E., Eggler, A.L., Mesecar, A.D. (2010) Development of an efficient E. coli expression and purification system for a catalytically active, human Cullin3-RINGBox1 protein complex and elucidation of its quaternary structure with Keap1. Biochem. Biophys. Res. Commun. 400, 471–475.

Eggler, A. L., Small, E., Hannink, M., and Mesecar, A. D. (2009) Cul3-mediated Nrf2 ubiquitination and ARE activation are dependent on the partial molar volume at position 151 of Keap1. Biochem J. DOI: 10.1042/BJ20090471

McAdams, K., Casper, E.S., Matthew, H., Santarsiero, B.D., Eggler, A.L., Mesecar, A., Halkides, C.J. (2008) The structures of T87I phosphono-CheY and T87I/Y106W phosphono-CheY help to explain their binding affinities to the FliM and CheZ peptides. Archives of Biochemistry and Biophysics 479, 105–113.

Holland, R., Hawkins, A.E., Eggler, A.L., Mesecar, A.D., Fabris, D., Fishbein, J.C. (2008) Prospective type 1 and type 2 disulfides of Keap1 protein. Chemical Research in Toxicology 21, 2051–2060.

Eggler, A. L., Gay, K. A., and Mesecar, A. D. (2008) Molecular mechanisms of natural products in chemoprevention: induction of cytoprotective enzymes by Nrf2. Molecular nutrition & food research. 52 Suppl 1, S84-94. DOI: 10.1002/2Fmnfr.200700249

Eggler, A. L., Luo, Y., van Breemen, R. B., and Mesecar, A. D. (2007) Identification of the Highly Reactive Cysteine 151 in the Chemopreventive Agent-Sensor Keap1 Protein is Method-Dependent. Chem. Res. Toxicol. 20, 1878–1884. DOI: 10.1021/2Ftx700217c

Luo, Y., Eggler, A.L., Liu, D., Liu, G., Mesecar, A.D., Breemen, R.B. van (2007) Sites of alkylation of human Keap1 by natural chemoprevention agents. J. Am. Soc. Spectrom. 18, 2226–2232.

Liu, G., Eggler, A.L., Dietz, B.M., Mesecar, A.D., Bolton, J.L., Pezzuto, J.M., Breemen, R.B. van (2005) Screening method for the discovery of potential cancer chemoprevention agents based on mass spectrometric detection of alkylated Keap1. Analytical Chemistry 77, 6407–6414.

Eggler, A. L., Liu, G., Pezzuto, J. M., Van Breemen, R. B., and Mesecar, A. D. (2005) Modifying specific cysteines of the electrophile-sensing human Keap1 protein is insufficient to disrupt binding to the Nrf2 domain Neh2. Proceedings of the National Academy of Sciences of the United States of America. 102, 10070–10075. DOI: 10.1073/pnas.0502402102

From University of Wisconsin, Madison (Graduate work)

Eggler, A.L., Lusetti, S.L., Cox, M.M. (2003).The C Terminus of the Escherichia coli RecA Protein Modulates the DNA Binding Competition with Single-stranded DNA-binding Protein. J. Biol. Chem. 278, 16389–16396.

Eggler, A.L., Inman, R.B., Cox, M.M. (2002) The Rad51-dependent Pairing of Long DNA Substrates Is Stabilized by Replication Protein A. J. Biol. Chem. 277, 39280–39288.

Rice, K.P., Eggler, A.L., Sung, P., Cox, M.M. (2001) DNA pairing and strand exchange by the Escherichia coli RecA and yeast Rad51 proteins without ATP hydrolysis. On the importance of not getting stuck. Journal of Biological Chemistry 276, 38570–38581.

From Iowa State University (Undergraduate work)

Peterson, C.J., Tsao, R., Eggler, A.L., Coats, J.R. (2000) Insecticidal activity of cyanohydrin and monoterpenoid compounds. Molecules 5, 648–654.