Publications
From Villanova University (Undergraduate authors underlined, Masters authors in italics)
Pensabene, K. M., LaMorte J., Allender,A.E., Wehr, J.,Kaur P., Savage, M., Eggler, A.L., (2023). Acute oxidative stress suppresses Nrf2 protein synthesis by inhibiting global protein translation. Antioxidants 12, 1735. DOI: 10.3390/antiox12091735
Grady, R. S., Traustadottir, T., Lagalante, A.F., Eggler, A.L., (2023). Bioavailable sulforaphane quantitation in plasma by LC-MS/MS is enhanced by blocking thiols. Journal of Agricultural and Food Chemistry, 71, 12875–12882. DOI: 10.1021/acs.jafc.3c01367
Sauerland, M., Mertes, R., Morozzi, C., Eggler, A.L., Gamon, L. F., Davies, M. J. (2021). Kinetic assessment of Michael addition reactions of alpha, beta-unsaturated carbonyl compounds to amino acid and protein thiols. Free Radical Biology and Medicine, 169, 1-11. DOI: 10.1016/j.freeradbiomed.2021.03.040
Repash, E. M., Pensabene, K. M., Palenchar, P., Eggler, A.L. (2021). Solving the Problem of Assessing Synergy and Antagonism for Non-Traditional Dosing Curve Compounds Using the DE/ZI Method: Application to Nrf2 Activators. Frontiers in Pharmacology, 12, 686201. DOI: 10.3389/fphar.2021.686201
Bauman, B. M., Jeong, C., Savage, M., Briker, A. L., Janigian, N. G., Nguyen, L. L., Kemmerer, Z. A., and Eggler, A. L. (2018) Dr. Jekyll and Mr. Hyde: Oxidizable phenol-generated reactive oxygen species enhance sulforaphane’s antioxidant response element activation, even as they suppress Nrf2 protein accumulation. Free Radical Biology and Medicine. 124, 532–540. DOI: 10.1016/j.freeradbiomed.2018.06.039
Kemmerer, Z. A., Ader, N. R., Mulroy, S. S., and Eggler, A. L. (2015) Comparison of human Nrf2 antibodies: A tale of two proteins. Toxicol. Lett. 238, 83–89. DOI: 10.1016/j.toxlet.2015.07.004
Eggler, A. L., and Savinov, S. N. (2013) Chemical and biological mechanisms of phytochemical activation of Nrf2 and importance in disease prevention. in 50 Years of Phytochemistry Research, pp. 121–155, Recent Advances in Phytochemistry, Springer International Publishing, 43, 121–155. DOI: 10.1007/978-3-319-00581-2_7
From Purdue University and University of Illinois at Chicago (Post-doctoral and Research Professor Work)
Jacobs, J., Grum-Tokars, V., Zhou, Y., Turlington, M., Saldanha, S.A., Chase, P., Eggler, A.L., Dawson, E.S., Baez-Santos, Y.M., Tomar, S., Mielech, A.M., Baker, S.C., Lindsley, C.W., Hodder, P., Mesecar, A., Stauffer, S.R. (2013) Discovery, synthesis, and structure-based optimization of a series of N-(tert-butyl)-2-(N-arylamido)-2-(pyridin-3-yl) acetamides (ML188) as potent noncovalent small molecule inhibitors of the severe acute respiratory syndrome coronavirus (SARS-CoV) 3CL protease. J. Med. Chem. 56, 534–546. https://doi.org/10.1021/jm301580n
Turlington, M., Chun, A., Tomar, S., Eggler, A.L., Grum-Tokars, V., Jacobs, J., Daniels, J.S., Dawson, E., Saldanha, A., Chase, P., Baez-Santos, Y.M., Lindsley, C.W., Hodder, P., Mesecar, A.D., Stauffer, S.R. (2013) Discovery of N-(benzo[1,2,3]triazol-1-yl)-N-(benzyl)acetamido)phenyl) carboxamides as severe acute respiratory syndrome coronavirus (SARS-CoV) 3CLpro inhibitors: identification of ML300 and noncovalent nanomolar inhibitors with an induced-fit binding. Bioorg. Med. Chem. Lett. 23, 6172–6177. https://doi.org/10.1016/j.bmcl.2013.08.112
Hu, C., Nikolic, D., Eggler, A.L., Mesecar, A.D., van Breemen, R.B. (2012) Screening for natural chemoprevention agents that modify human Keap1. Analytical Biochemistry 421, 108–114. https://doi.org/10.1016/j.ab.2011.10.028
Hu, C., Eggler, A. L., Mesecar, A. D., and van Breemen, R. B. (2011) Modification of Keap1 cysteine residues by sulforaphane. Chem Res Toxicol. 24, 515–521. DOI: 10.1021/2Ftx100389r
Turlington, M., Chun, A., Jacobs, J., Dawson, E., Daniels, J.S., Saldanha, A., Chase, P., Hodder, P., Eggler, A.L., Tokars, V., Mesecar, A., Lindsley, C.W., Stauffer, S.R. (2010) Non-covalent triazole-based inhibitors of the SARS main proteinase 3CLpro, in: Probe Reports from the NIH Molecular Libraries Program. National Center for Biotechnology Information (US), Bethesda (MD).
Small, E., Eggler, A.L., Mesecar, A.D. (2010) Development of an efficient E. coli expression and purification system for a catalytically active, human Cullin3-RINGBox1 protein complex and elucidation of its quaternary structure with Keap1. Biochem. Biophys. Res. Commun. 400, 471–475. https://doi.org/10.1016/j.bbrc.2010.08.062
Eggler, A. L., Small, E., Hannink, M., and Mesecar, A. D. (2009) Cul3-mediated Nrf2 ubiquitination and ARE activation are dependent on the partial molar volume at position 151 of Keap1. Biochem J. DOI: 10.1042/BJ20090471
McAdams, K., Casper, E.S., Matthew, H., Santarsiero, B.D., Eggler, A.L., Mesecar, A., Halkides, C.J. (2008) The structures of T87I phosphono-CheY and T87I/Y106W phosphono-CheY help to explain their binding affinities to the FliM and CheZ peptides. Archives of Biochemistry and Biophysics 479, 105–113. https://doi.org/10.1016/j.abb.2008.08.019
Holland, R., Hawkins, A.E., Eggler, A.L., Mesecar, A.D., Fabris, D., Fishbein, J.C. (2008) Prospective type 1 and type 2 disulfides of Keap1 protein. Chemical Research in Toxicology 21, 2051–2060. https://doi.org/10.1021/tx800226m
Eggler, A. L., Gay, K. A., and Mesecar, A. D. (2008) Molecular mechanisms of natural products in chemoprevention: induction of cytoprotective enzymes by Nrf2. Molecular nutrition & food research. 52 Suppl 1, S84-94. DOI: 10.1002/2Fmnfr.200700249
Eggler, A. L., Luo, Y., van Breemen, R. B., and Mesecar, A. D. (2007) Identification of the Highly Reactive Cysteine 151 in the Chemopreventive Agent-Sensor Keap1 Protein is Method-Dependent. Chem. Res. Toxicol. 20, 1878–1884. DOI: 10.1021/2Ftx700217c
Luo, Y., Eggler, A.L., Liu, D., Liu, G., Mesecar, A.D., Breemen, R.B. van (2007) Sites of alkylation of human Keap1 by natural chemoprevention agents. J. Am. Soc. Spectrom. 18, 2226–2232. https://doi.org/10.1016/j.jasms.2007.09.015
Liu, G., Eggler, A.L., Dietz, B.M., Mesecar, A.D., Bolton, J.L., Pezzuto, J.M., Breemen, R.B. van (2005) Screening method for the discovery of potential cancer chemoprevention agents based on mass spectrometric detection of alkylated Keap1. Analytical Chemistry 77, 6407–6414. https://doi.org/10.1021/ac050892r
Eggler, A. L., Liu, G., Pezzuto, J. M., Van Breemen, R. B., and Mesecar, A. D. (2005) Modifying specific cysteines of the electrophile-sensing human Keap1 protein is insufficient to disrupt binding to the Nrf2 domain Neh2. Proceedings of the National Academy of Sciences of the United States of America. 102, 10070–10075. DOI: 10.1073/pnas.0502402102
From University of Wisconsin, Madison (Graduate work)
Eggler, A.L., Lusetti, S.L., Cox, M.M. (2003).The C Terminus of the Escherichia coli RecA Protein Modulates the DNA Binding Competition with Single-stranded DNA-binding Protein. J. Biol. Chem. 278, 16389–16396. https://doi.org/10.1074/jbc.M212920200
Eggler, A.L., Inman, R.B., Cox, M.M. (2002) The Rad51-dependent Pairing of Long DNA Substrates Is Stabilized by Replication Protein A. J. Biol. Chem. 277, 39280–39288. https://doi.org/10.1074/jbc.M204328200
Rice, K.P., Eggler, A.L., Sung, P., Cox, M.M. (2001) DNA pairing and strand exchange by the Escherichia coli RecA and yeast Rad51 proteins without ATP hydrolysis. On the importance of not getting stuck. Journal of Biological Chemistry 276, 38570–38581. https://doi.org/10.1074/jbc.M105678200
From Iowa State University (Undergraduate work)
Peterson, C.J., Tsao, R., Eggler, A.L., Coats, J.R. (2000) Insecticidal activity of cyanohydrin and monoterpenoid compounds. Molecules 5, 648–654. https://doi.org/10.3390/50400648